Identification and monitoring of *Trichoderma* in field soil

Grzegorz Bartoszewski
Warsaw University of Life Sciences
Department of Plant Genetics Breeding and Biotechnology
Warsaw, Poland

Michał Oskiera
Research Institute of Horticulture
Microbiology Laboratory
Skierniewice, Poland
Overview

1. Introduction
2. Molecular identification of *Trichoderma* strain potentially useful as biological control agents
3. Development of PCR-based markers useful for *Trichoderma* identification and monitoring in soil
4. Monitoring of *T. atroviride* and *T. harzianum* applied in lettuce cultivation
5. Conclusions
Introduction - Agriculture in Poland – brief overview

3 in EU - agricultural area, next to France/Spain
about 25% of population employed in agriculture
3% of GDP gross domestic product
8,5ha – average farm size

Major crops, based on production area

Cereals: wheat, triticale, rye, maize
Other: potato, sugarbeet

Fruits:
apples, plums, cherries, strawberries, raspberries

Vegetables:
onion, cabbage, carrot, cucumber

Apples: world top 3 producer biggest European producer

Expatspoland.com
Tygodnik-rolniczy.pl
The importance of *Trichoderma* in agriculture

Common fungi in the environment with **complex taxonomy** >250 species

Many research on *Trichoderma* – belong to the most extensively studied fungi

Successful stories - *Trichoderma*-based biotechnologies

- production of enzymes for chemical/food/feed industries
- in agriculture:
 - Biological Control Agents – **BCA**
 - to control diseases/pests in environment-friendly way
 - Plant Growth Promoting Fungi – **PGPF**
 - to promote crops growth/yield

However, certain *Trichoderma species /strain* can also be pathogens
Beneficial effects of *Trichoderma* in agriculture

Trichoderma can help in plant production in different ways

- soil properties improvement - intensification of decomposition of organic matter
- antagonistic activity against soil microorganisms
 - competition for nutrients and space
 - environment modification - acidification, siderophores (peptides with affinity to Fe$^{+3}$)
 - secretion of antibiotics –antibiosis
 - production of lytic enzymes – mycoparasitism

In the presence of *Trichoderma* plants

- can show better growth
- develop larger surface of the root system
- acquire resistance to pathogens
 - SAR – systemic acquired resistance/ ISR – induced systemic resistance
Selection of *Trichoderma* strains for the use in biological plant protection

- Many efforts to select **efficient biocontrol strains**
- To commercialize biocontrol strain, it is **extremely important** to establish taxonomic position and to develop techniques for strain identification
- **Molecular methods** are now replacing classical fungi identification methods
- Biopreparations has to be **effective in the environment where is applied**
- *Trichoderma* population has to be maintained at satisfactory level during crop production cycle – **monitoring methods are needed**
Molecular identification of *Trichoderma* strains potentially useful in biological plant protection in Poland
Base collection of *Trichoderma* strains

- **104 TRS strains** potentially useful as BCA / PGPF
 - originated from: soils, composts, forests,
 - collected by Szczech and others at Horticulture Institute Skierniewice
 - pre-characterised as belonging to *T.atroviride, T.harzianum, T.virens*
 - part of the collection not characterized

- species reference strain

Goal: Molecular identification of the strains
Molecular identification methodology

DNA isolation → cells → Method optimisation

Molecular work → MLST → Rep-PCR

Bioinformatic analysis of MLST DNA sequences

Species identification

- TrichOKEY
- TrichoMARK
- TrichoBLAST

ISTH

http://www.isth.info

Bayesian phylogenetic analyses

ISTH – International Subcomission on *Trichoderma* and *Hypocrea* Taxonomy
Optimisation of DNA isolation from medium-grown *Trichoderma*

I. Different methods of fungi cultivation for DNA isolation: solid media, liquid / rotary shaken

II. Comparition of 6 different methods of DNA isolation from *Trichoderma* cells:

1. **boiling cells**, 12 min, 105 °C
5. NucleoSpin Plant II kit, *Macherey-Nagel*, Germany
6. DNeasy Plant Mini Kit, *Qiagen*, Germany

Green frames – best methods
MLST - Multilocus Sequence Typing

Testing **tens of primer** combinations - 4 pairs were selected for PCR/sequencing

<table>
<thead>
<tr>
<th>Gene</th>
<th>Variable region</th>
<th>Gene full name</th>
<th>Primers</th>
<th>Lenght [bp]</th>
</tr>
</thead>
</table>
| *rDNA* | ITS1 | rRNA internal transcribed spacers | ITS4 / ITS6
White et al. 1990
Cooke and Duncan, 1997 | 620 |
| | ITS2 | | | |
| *tef1α* | tef_int4 (large) | translation elongation factor 1-alpha | EF1_728F / TEF_LLErev
Carbone and Kohn 1999
Jaklish et al. 2006 | 1.260 |
| | tef1_int5 (short) | | | |
| | tef1_exon6 (large) | | | |
| *chi18-5* | large exon *chi*18-5 | chitinase 42 kDa | chit42_1 af / chit42_2 ar
Kulling-Gradinger et al. 2002 | 800 |
| *rpb2* | exon *rpb2* | RNA polymerase II | RPB2_210 up
RPB2_1450 low
Graefenhan, unpublished | 1.200 |

Total length of sequenced DNA 3.880

4 non-related loci – phylogenetic markers - used for taxonomic identification
DNA sequence variability of taxonomic markers

Graphical overview of genetic variability in 4 sequenced regions for *T. atroviride* and *T. harzianum*

Oskiera et al. unpublished
Species identification

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of strains</th>
<th>Identified strain species</th>
<th>%</th>
<th>Arising issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS1 i 2 (TrichOKEY)</td>
<td>104</td>
<td>94</td>
<td>90,3</td>
<td>Lack of reference sequences T. gamsii; T. crassum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Identical references T. cerinum i T. tomentosum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>New variants of ITS T.atroviride, T.velutinum, T.cerinum</td>
</tr>
<tr>
<td>tef1</td>
<td>104</td>
<td>100</td>
<td>96,1</td>
<td>Lack of reference sequences T. gamsii, T. crassum, T. spirale, T. pleuroticola</td>
</tr>
<tr>
<td>chi18-5</td>
<td>104</td>
<td>94</td>
<td>90,3</td>
<td></td>
</tr>
<tr>
<td>rpb2</td>
<td>104</td>
<td>100</td>
<td>96,1</td>
<td></td>
</tr>
</tbody>
</table>

Species identification was successful for 100 out of 104 strains

tef1 and *rpb2* more informative, *tef1* the most useful

Species identification

<table>
<thead>
<tr>
<th>Section</th>
<th>Clade</th>
<th>Species</th>
<th>Strain number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoderma</td>
<td>Viride</td>
<td>T. atroviride</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. gamsii</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. sp.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. viridecens</td>
<td>1</td>
</tr>
<tr>
<td>Pachybasium "A" / Hamatum</td>
<td></td>
<td>T. hamatum</td>
<td>2</td>
</tr>
<tr>
<td>Pachybasium</td>
<td>Harzianum</td>
<td>T. harzianum sensu stricto</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. simmonsii</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. cf. harzianum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. atrobrunneum</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. lentiforme</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. aggressivum f. europaeum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. pleuroticola</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. tomentosum</td>
<td>1</td>
</tr>
<tr>
<td>Virens</td>
<td></td>
<td>T. crassum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. virens</td>
<td>9</td>
</tr>
<tr>
<td>Longibrachiatum</td>
<td></td>
<td>T. citrinoviride</td>
<td>1</td>
</tr>
<tr>
<td>Nie przypisane</td>
<td>Longibrachiatum</td>
<td>T. spirale</td>
<td>1</td>
</tr>
<tr>
<td>Łącznie:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
</tbody>
</table>

Species identification

<table>
<thead>
<tr>
<th>Section</th>
<th>Clade</th>
<th>Species</th>
<th>Strain number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoderma</td>
<td>Viride</td>
<td>T. atroviride</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. gamsii</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. sp.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. viridescens</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pachybasium "A" / Hamatum</td>
<td>2</td>
</tr>
<tr>
<td>Pachybasium</td>
<td>Harzianum</td>
<td>T. harzianum sensu stricto</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. simmonsii</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. cf. harzianum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. atrobrunneum</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. lentiforme</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. agriomycium f. cyanum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. phoenicola</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. tomentosum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Virens</td>
<td>T. crassum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. virens</td>
<td>9</td>
</tr>
<tr>
<td>Longibrachiatum</td>
<td></td>
<td>T. citrinoviride</td>
<td>1</td>
</tr>
<tr>
<td>Nie przypisane</td>
<td>Lone lineages</td>
<td>T. spirale</td>
<td>1</td>
</tr>
<tr>
<td>Łącznie:</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
</tbody>
</table>

Species identification

<table>
<thead>
<tr>
<th>Section</th>
<th>Clade</th>
<th>Species</th>
<th>Strain number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoderma</td>
<td>Viride</td>
<td>T. atroviride</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. gamsii</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. sp.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. viridescens</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pachybasium "A" / Hamatum</td>
<td>T. hamatum</td>
<td>2</td>
</tr>
<tr>
<td>Pachybasium</td>
<td>Harzianum</td>
<td>T. harzianum sensu stricto</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. simmonsii</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. cf. harzianum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Virens</td>
<td>T. atrobrunneum</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. lentiforme</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. aggressivum f. europaeum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. pleuroticola</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. tomentosum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. crassum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. virens</td>
<td>9</td>
</tr>
<tr>
<td>Longibrachiatum</td>
<td>Longibrachiatum</td>
<td>T. citrinoviride</td>
<td>1</td>
</tr>
<tr>
<td>Nie przypisane</td>
<td>Lone lineages</td>
<td>T. spirale</td>
<td>1</td>
</tr>
<tr>
<td>Łącznie:</td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

TRS4, TRS29 and TRS33 possibly belong to the not yet described *Trichodema* species

Bayesian phylogenetic tree
4th intron of *tef1* *Trichoderma* Rogersonii clade

Trichoderma atroviride phylogeny

Bayesian phylogenetic tree

4th and 5th intron tef1

Trichoderma atroviride

TRS18 belongs to not described so far *T. atroviride* clade

Genetic fingerprinting - rep-PCR repetitive sequence–based PCR

ERIC / REP / BOX primers for tandemly repeated DNA

Strains were grouped by their genetic similarity

Fast method for preliminary assessment of the strains

Information about genetic diversity within species

Compatibility of the method with the results of sequence analyses

Oskiera et al. unpublished
Conclusions

- **4 phylogenic loci** allowed for identification and phylogenetic placing of *Trichoderma* species – *tef1* and *rpb2* are the most informative, *tef1* is the most useful.
- There are **limitations** of taxonomic sequences databases. Phylogenetic analysis is helpful to determine taxonomic position of poorly characterized *Trichoderma* strains.
- **rep-PCR** fingerprinting is useful in preliminary *Trichoderma* identification and diversity studies.
Development of molecular markers based on PCR for identification of selected *Trichoderma* strains
Development of molecular markers for *Trichoderma* identification and monitoring

- DNA sequences of *Trichoderma*
 - own, GenBank, ISTH, SCAR, JGI
- Sequence Alignments
- Variable regions identification

Development of PCR primers

- PCR optimisation
- Species specificity verification

Development of multiplex-PCR

Identification

Monitoring

Oskiera et al. (2017) Biological Control 113: 65-72
Species-specific PCR primers

On the basis of the tef1 and chi18-5 genes

T. atroviride
T. harzianum sensu stricto
T. simmonsii

On the basis of our SCAR markers developed for *T. atroviride* (Skoneczny et al. 2015)

T. atroviride
T. atroviride klad A
T. harzianum sensu stricto
T. harzianum sensu stricto, *T. simmonsii, T. atrobrunneum*
T. harzianum sensu stricto, *T. atrobrunneum, T. afroharzianum*
T. harzianum sensu stricto, *T. atrobrunneum, T. afroharzianum, T. lentiforme*

Specificity confirmed with strains representing 20 *Trichoderma* clades

Oskiera et al. (2017) Biological Control 113: 65-72
Development of diagnostic multiplex-PCR

Testing of PCR reactions with multiple sets of primers (2-4)

1. **PCR control:**
 primers specific to the fungal ITS region – 1st positive control

2. **Primers specific for the *Trichoderma* genus** 2nd positive control (*Trichoderma*)
 primers for fungal chitinase *chi18-5* or beta-tubulin *tub* gene

3. ***Trichoderma* species-specific primers** diagnostic primers
 PCR product confirms presence of specific *Trichoderma* species
 chi18-5, *tef1*, SCARs *T. atroviride*, QTh SCAR *T. harzianum*

Oskiera et al. (2017) Biological Control 113: 65-72
Multiplex-PCR for *Trichoderma atroviride*

- **T. atroviride**
 - tef1
 - ITS

- **T. atroviride**
 - ITS
 - chi18-5

- **T. atroviride**
 - ITS
 - SCAR X18

- **T. atroviride klad A**
 - ITS
 - SCAR X18

Oskiera et al. (2017) Biological Control 113: 65-72
Trichoderma harzianum identification methods

Oskiera et al. (2017) Biological Control 113: 65-72
Conclusion

- DNA sequence mining allowed to develop multiplex-PCR methodology useful for *T. atroviride* and *T. harzianum* or groups of species identification
Trichoderma monitoring in mineral soil during lettuce cultivation

Control – no *Trichoderma* application
Bioprep I *T. atroviride* TRS25 + *T. harzianum* TRS59
Bioprep II *T. atroviride* TRS43 + *T. harzianum* TRS85
Organic carrier - T-GRAN - only
3 random plots for each treatment
Field experiments in 3 locations and soil sampling

I Experiment (spring 2012- summer 2014)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.05.2012</td>
<td>„0” Term - before application</td>
</tr>
<tr>
<td>26.06.2012</td>
<td>Trichoderma application</td>
</tr>
<tr>
<td>14 i 16.08.2012</td>
<td>plant harvest</td>
</tr>
<tr>
<td>11.10.2012</td>
<td>„9” Term (15 weeks since application)</td>
</tr>
<tr>
<td>9.05.2013</td>
<td>„10” Term (after winter)</td>
</tr>
<tr>
<td>10.07.2014</td>
<td>“11” Term - after more than 2 years since Trichoderma application</td>
</tr>
</tbody>
</table>

Long time experiment

Trichoderma monitored for 2 years after application

II Experiment (spring 2013)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.04.2013</td>
<td>„0” Term – before application</td>
</tr>
<tr>
<td>26.04.2013</td>
<td>Trichoderma application</td>
</tr>
<tr>
<td>15.05.2013</td>
<td>lettuce planting</td>
</tr>
<tr>
<td>13.06.2013</td>
<td>"1" Term - during plant growth</td>
</tr>
<tr>
<td>10.07.2013</td>
<td>plant harvest</td>
</tr>
<tr>
<td>24.07.2013</td>
<td>"2" Term – after plant harvesting 12 weeks since Trichoderma application</td>
</tr>
</tbody>
</table>

Rainy weather

III Experiment (summer 2013)

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.07.2013</td>
<td>„0” Term – before application</td>
</tr>
<tr>
<td>24.07.2013</td>
<td>Trichoderma application</td>
</tr>
<tr>
<td>31.07.2013</td>
<td>lettuce planting</td>
</tr>
<tr>
<td>05.09.2013</td>
<td>"1” Term - during plant growth</td>
</tr>
<tr>
<td>27.09.2013; 30.10.2013</td>
<td>plant harvest</td>
</tr>
<tr>
<td>03.10.2013</td>
<td>"2” Term – after plant harvesting, 10 weeks since Trichoderma application</td>
</tr>
</tbody>
</table>

Good plant growth and weather condition

Oskiera et al. (2017) Biological Control 113: 65-72
Monitoring of *Trichoderma* in soil

- Soil samples
- Microbiological analysis
 - Soil samples plating on Martin’s medium (1950)
 - *Trichoderma* characteristic colony counting
 - Molecular identification of representative isolates
- Molecular analysis
 - DNA isolation
 - DNA isolation at -80°C
 - Multiplex-PCR, tef1, rep-PCR
 - Metagenomic analysis

Oskiera et al. (2017) Biological Control 113: 65-72
Trichoderma quantity determination in soil by samples plating and CFU

Experiment I

Increased amount of *Trichoderma* in soil after application
Before application less than 10^4 CFU/gram dry soil

Amount of *Trichoderma* in soil high during lettuce cultivation and also in the next 2 years but decreasing (Experiment I)

1-2 x 10^6 CFU/gram dry soil

Experiment II

1-2 x 10^5 CFU/gram dry soil

Experiment III

1-2 x 10^4 CFU/gram dry soil - variant T-GRAN + TRS25 + TRS59

1-2 x 10^5 CFU/gram dry soil - variant T-GRAN + TRS43 + TRS85

Oskiera et al. (2017) Biological Control 113: 65-72
DNA isolation from mineral soil

Comparition of 5 methods of DNA isolation from soil:

1. Fast DNA Spin Kit For Soil (MP Biomedicals, USA) + MP Biomedicals homogenizer
2. Genomic DNA from Soil (Macherey-Nagel, Germany) + MP Biomed. homogenizer
3. SoilMaster DNA Extraction Kit (Epicentre, USA)
4. DNeasy Plant Mini Kit (Qiagen, Germany)
5. CTAB + DNeasy Plant Mini Kit (Aldrich i Cullis, 1993 + Qiagen)

Green frame – best methods
Trichoderma monitoring in the field soil multiplex-PCR for *T.atroviride* and *T.harzianum*

Experiment I – first year

<table>
<thead>
<tr>
<th>Fungi ITS 5.8SR/LR6</th>
<th>Trichoderma chi18-5_1a_f/r</th>
<th>T. atroviride X18_1F/3R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoderma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungi ITS</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>5.8SR/LR6</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>57</td>
<td>61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplex-PCR</th>
<th>different markers</th>
<th>confirmation of the high amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment I</td>
<td>first year</td>
<td>of T. atroviride and T. harzianum in soil after application of biopreparations</td>
</tr>
</tbody>
</table>

Oskiera et al. (2017) Biological Control 113: 65-72
Next Generation Sequencing - Illumina MiSeq

Soil samples - field experiment 1 and 3
- no treatment, carrier, Bioprep1,Bioprep2
- two plots per combination per treatment
- before, 5, 15 weeks after biopreparation application
DNA was isolated from soil samples

PCR amplification:
- fungal **ITS1** region
- bacterial **V4 16S rDNA** region
DNA sequencing **Illumina MiSeq**
Number of reads 0.5-0.9 milion per sample
Bioinformatic analysis - counting reads for fungi genera

MiSeq Illumina technology is useful to study changes in soil microbial populations as a consequence of biopreparation application - it was possible to estimate the population of fungi at the genera level – species were not distinguished
Conclusions

- Biocontrol *Trichoderma* species persisted at relatively high level in soil during lettuce cultivation and were detected even after two years.
- Multiplex-PCR confirmed the high amount of *T. atroviride* and *T. harzianum* in soil after application of biopreparations.
- Bacterial population changes related *Trichoderma* application were not detected.
- Biopreparation effect on *Fusarium* gives a warning to study carefully dependencies of fungal/microbial communities in the soil towards crops-beneficial soil microorganism management.
Acknowledgments

Research team

Warsaw University of Life Sciences
Warsaw Poland
Department of Plant Genetics
Breeding and Biotechnology

Dr. Dominik Skoneczny
MSc. Monika Szajwaj
Prof. Grzegorz Bartoszewski

Research Institute of Horticulture
Microbiology Laboratory
Skierniewice, Poland

Dr. Michał Oskiera
Dr. Magdalena Szczech
Dr. Agnieszka Stępowska
Prof. Urszula Smolińska

Funding

Polish Trichoderma strains in plant protection and organic waste management
UDA-POIG.01.03.01-00-129/09 TASK 10